Parietal operculum and motor cortex activities predict motor recovery in moderate to severe stroke

نویسندگان

  • Firdaus Fabrice Hannanu
  • Thomas A. Zeffiro
  • Laurent Lamalle
  • Olivier Heck
  • Félix Renard
  • Antoine Thuriot
  • Alexandre Krainik
  • Marc Hommel
  • Olivier Detante
  • Assia Jaillard
  • K. Garambois
  • M. Barbieux-Guillot
  • I. Favre-Wiki
  • S. Grand
  • J.F. Le Bas
  • A. Moisan
  • M.J. Richard
  • F. De Fraipont
  • J. Gere
  • S. Marcel
  • W. Vadot
  • G. Rodier
  • D. Perennou
  • A. Chrispin
  • P. Davoine
  • B. Naegele
  • P. Antoine
  • I. Tropres
  • F. Renard
چکیده

While motor recovery following mild stroke has been extensively studied with neuroimaging, mechanisms of recovery after moderate to severe strokes of the types that are often the focus for novel restorative therapies remain obscure. We used fMRI to: 1) characterize reorganization occurring after moderate to severe subacute stroke, 2) identify brain regions associated with motor recovery and 3) to test whether brain activity associated with passive movement measured in the subacute period could predict motor outcome six months later. Because many patients with large strokes involving sensorimotor regions cannot engage in voluntary movement, we used passive flexion-extension of the paretic wrist to compare 21 patients with subacute ischemic stroke to 24 healthy controls one month after stroke. Clinical motor outcome was assessed with Fugl-Meyer motor scores (motor-FMS) six months later. Multiple regression, with predictors including baseline (one-month) motor-FMS and sensorimotor network regional activity (ROI) measures, was used to determine optimal variable selection for motor outcome prediction. Sensorimotor network ROIs were derived from a meta-analysis of arm voluntary movement tasks. Bootstrapping with 1000 replications was used for internal model validation. During passive movement, both control and patient groups exhibited activity increases in multiple bilateral sensorimotor network regions, including the primary motor (MI), premotor and supplementary motor areas (SMA), cerebellar cortex, putamen, thalamus, insula, Brodmann area (BA) 44 and parietal operculum (OP1-OP4). Compared to controls, patients showed: 1) lower task-related activity in ipsilesional MI, SMA and contralesional cerebellum (lobules V-VI) and 2) higher activity in contralesional MI, superior temporal gyrus and OP1-OP4. Using multiple regression, we found that the combination of baseline motor-FMS, activity in ipsilesional MI (BA4a), putamen and ipsilesional OP1 predicted motor outcome measured 6 months later (adjusted-R2 = 0.85; bootstrap p < 0.001). Baseline motor-FMS alone predicted only 54% of the variance. When baseline motor-FMS was removed, the combination of increased activity in ipsilesional MI-BA4a, ipsilesional thalamus, contralesional mid-cingulum, contralesional OP4 and decreased activity in ipsilesional OP1, predicted better motor outcome (djusted-R2 = 0.96; bootstrap p < 0.001). In subacute stroke, fMRI brain activity related to passive movement measured in a sensorimotor network defined by activity during voluntary movement predicted motor recovery better than baseline motor-FMS alone. Furthermore, fMRI sensorimotor network activity measures considered alone allowed excellent clinical recovery prediction and may provide reliable biomarkers for assessing new therapies in clinical trial contexts. Our findings suggest that neural reorganization related to motor recovery from moderate to severe stroke results from balanced changes in ipsilesional MI (BA4a) and a set of phylogenetically more archaic sensorimotor regions in the ventral sensorimotor trend, in which OP1 and OP4 processes may complement the ipsilesional dorsal motor cortex in achieving compensatory sensorimotor recovery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lesions to Primary Sensory and Posterior Parietal Cortices Impair Recovery from Hand Paresis after Stroke

BACKGROUND Neuroanatomical determinants of motor skill recovery after stroke are still poorly understood. Although lesion load onto the corticospinal tract is known to affect recovery, less is known about the effect of lesions to cortical sensorimotor areas. Here, we test the hypothesis that lesions of somatosensory cortices interfere with the capacity to recover motor skills after stroke. ME...

متن کامل

Partially overlapping sensorimotor networks underlie speech praxis and verbal short-term memory: evidence from apraxia of speech following acute stroke

We tested the hypothesis that motor planning and programming of speech articulation and verbal short-term memory (vSTM) depend on partially overlapping networks of neural regions. We evaluated this proposal by testing 76 individuals with acute ischemic stroke for impairment in motor planning of speech articulation (apraxia of speech, AOS) and vSTM in the first day of stroke, before the opportun...

متن کامل

Effects of High-Frequency Repetitive Transcranial Magnetic Stimulation on Motor Functions in Patients with Subcortical Stroke

Background: Motor function impairment occurs in approximately two-thirds of patients with subcortical stroke. Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique for modulating cortical excitability. Objectives: The present study was designed for assessing the efficacy of high-frequency rTMS (5 Hz) on ipsilesional primary motor cortex in patients with subcortical stro...

متن کامل

Reorganization of sensory and motor systems in hemiplegic stroke patients. A positron emission tomography study.

BACKGROUND AND PURPOSE Cortical reorganization of motor systems has been found in recovered stroke patients. Reorganization in nonrecovered hemiplegic stroke patients early after stroke, however, is less well described. We used positron emission tomography to study the functional reorganization of motor and sensory systems in hemiplegic stroke patients before motor recovery. METHODS Regional ...

متن کامل

Neural Correlates of Motor Recovery Measured by SPECT at Six Months After Basal Ganglia Stroke

Objective To investigate neural correlates associated with recovery of motor function over 6 months in patients with basal ganglia (BG) stroke using acetazolamide (ACZ) stress brain-perfusion single-photon emission computed tomography (SPECT). Methods Medical records of 22 patients presenting first-ever BG stroke were retrospectively reviewed. Regional cerebral blood flow (CBF) and cerebrovas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2017